Uneven TerrainΒΆ

UNEVEN TERRAIN PATHFINDING:

https://www.youtube.com/watch?v=ozja1l4rpo4


The code for this tutorial:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# PandAI Author: Srinavin Nair
# Original Author: Ryan Myers
# Models: Jeff Styers, Reagan Heller

# Last Updated: 6/13/2005
#
# This tutorial provides an example of creating a character and having it walk
# around on uneven terrain, as well as implementing a fully rotatable camera.
# It uses PandAI pathfinding to move the character.

from direct.showbase.ShowBase import ShowBase
from panda3d.core import CollisionTraverser, CollisionNode
from panda3d.core import CollisionHandlerQueue, CollisionRay
from panda3d.core import Filename
from panda3d.core import PandaNode, NodePath, TextNode
from panda3d.core import Vec3, BitMask32
from direct.gui.OnscreenText import OnscreenText
from direct.actor.Actor import Actor
from direct.task.Task import Task
from direct.showbase.DirectObject import DirectObject
import sys
import os

from panda3d.ai import *

base = ShowBase()

SPEED = 0.5

# Figure out what directory this program is in.
MYDIR = os.path.abspath(sys.path[0])
MYDIR = Filename.fromOsSpecific(MYDIR).getFullpath()

font = loader.loadFont("cmss12")


# Function to put instructions on the screen.
def addInstructions(pos, msg):
    return OnscreenText(text=msg, style=1, fg=(1, 1, 1, 1), font=font,
                        pos=(-1.3, pos), align=TextNode.ALeft, scale=.05)


# Function to put title on the screen.
def addTitle(text):
    return OnscreenText(text=text, style=1, fg=(1, 1, 1, 1), font=font,
                        pos=(1.3, -0.95), align=TextNode.ARight, scale=.07)


class World(DirectObject):

    def __init__(self):
        self.switchState = True
        self.switchCam = False
        self.path_no = 1
        self.keyMap = {
            "left": 0,
            "right": 0,
            "forward": 0,
            "cam-left": 0,
            "cam-right": 0
        }
        base.win.setClearColor((0, 0, 0, 1))
        base.cam.setPosHpr(17.79, -87.64, 90.16, 38.66, 325.36, 0)
        # Post the instructions

        addTitle("Pandai Tutorial: Roaming Ralph (Walking on Uneven Terrain) "
                 "working with pathfinding")
        addInstructions(0.95, "[ESC]: Quit")
        addInstructions(0.90, "[Space - do Only once]: Start Pathfinding")
        addInstructions(0.85, "[Enter]: Change camera view")
        addInstructions(0.80, "[Up Arrow]: Run Ralph Forward")
        addInstructions(0.70, "[A]: Rotate Camera Left")
        addInstructions(0.65, "[S]: Rotate Camera Right")

        # Set up the environment
        #
        # This environment model contains collision meshes.  If you look
        # in the egg file, you will see the following:
        #
        #    <Collide> { Polyset keep descend }
        #
        # This tag causes the following mesh to be converted to a collision
        # mesh -- a mesh which is optimized for collision, not rendering.
        # It also keeps the original mesh, so there are now two copies ---
        # one optimized for rendering, one for collisions.

        self.environ = loader.loadModel("models/world")
        self.environ.reparentTo(render)
        self.environ.setPos(12, 0, 0)

        self.box = loader.loadModel("models/box")
        self.box.reparentTo(render)
        self.box.setPos(-29.83, 0, 0)
        self.box.setScale(1)

        self.box1 = loader.loadModel("models/box")
        self.box1.reparentTo(render)
        self.box1.setPos(-51.14, -17.90, 0)
        self.box1.setScale(1)

        # Create the main character, Ralph

        #ralphStartPos = self.environ.find("**/start_point").getPos()
        ralphStartPos = Vec3(-98.64, -20.60, 0)
        self.ralph = Actor("models/ralph",
                           {"run": "models/ralph-run",
                            "walk": "models/ralph-walk"})
        self.ralph.reparentTo(render)
        self.ralph.setScale(1)
        self.ralph.setPos(ralphStartPos)

        self.ralphai = Actor("models/ralph",
                             {"run": "models/ralph-run",
                              "walk": "models/ralph-walk"})

        self.pointer = loader.loadModel("models/arrow")
        self.pointer.setColor(1, 0, 0)
        self.pointer.setPos(-7.5, -1.2, 0)
        self.pointer.setScale(3)
        self.pointer.reparentTo(render)

        self.pointer1 = loader.loadModel("models/arrow")
        self.pointer1.setColor(1, 0, 0)
        self.pointer1.setPos(-98.64, -20.60, 0)
        self.pointer1.setScale(3)
        #self.pointer.reparentTo(render)

        # Create a floater object.  We use the "floater" as a temporary
        # variable in a variety of calculations.

        self.floater = NodePath(PandaNode("floater"))
        self.floater.reparentTo(render)

        # Accept the control keys for movement and rotation

        self.accept("escape", sys.exit)
        self.accept("enter", self.activateCam)
        self.accept("arrow_left", self.setKey, ["left", 1])
        self.accept("arrow_right", self.setKey, ["right", 1])
        self.accept("arrow_up", self.setKey, ["forward", 1])
        self.accept("a", self.setKey, ["cam-left", 1])
        self.accept("s", self.setKey, ["cam-right", 1])
        self.accept("arrow_left-up", self.setKey, ["left", 0])
        self.accept("arrow_right-up", self.setKey, ["right", 0])
        self.accept("arrow_up-up", self.setKey, ["forward", 0])
        self.accept("a-up", self.setKey, ["cam-left", 0])
        self.accept("s-up", self.setKey, ["cam-right", 0])

        #taskMgr.add(self.move,"moveTask")

        # Game state variables
        self.isMoving = False

        # Set up the camera

        #base.disableMouse()
        #base.camera.setPos(self.ralph.getX(), self.ralph.getY() + 10, 2)

        # We will detect the height of the terrain by creating a collision
        # ray and casting it downward toward the terrain.  One ray will
        # start above ralph's head, and the other will start above the camera.
        # A ray may hit the terrain, or it may hit a rock or a tree.  If it
        # hits the terrain, we can detect the height.  If it hits anything
        # else, we rule that the move is illegal.

        self.cTrav = CollisionTraverser()

        self.ralphGroundRay = CollisionRay()
        self.ralphGroundRay.setOrigin(0, 0, 1000)
        self.ralphGroundRay.setDirection(0, 0, -1)
        self.ralphGroundCol = CollisionNode('ralphRay')
        self.ralphGroundCol.addSolid(self.ralphGroundRay)
        self.ralphGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.ralphGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.ralphGroundColNp = self.ralph.attachNewNode(self.ralphGroundCol)
        self.ralphGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.ralphGroundColNp, self.ralphGroundHandler)

        self.camGroundRay = CollisionRay()
        self.camGroundRay.setOrigin(0, 0, 1000)
        self.camGroundRay.setDirection(0, 0, -1)
        self.camGroundCol = CollisionNode('camRay')
        self.camGroundCol.addSolid(self.camGroundRay)
        self.camGroundCol.setFromCollideMask(BitMask32.bit(0))
        self.camGroundCol.setIntoCollideMask(BitMask32.allOff())
        self.camGroundColNp = base.camera.attachNewNode(self.camGroundCol)
        self.camGroundHandler = CollisionHandlerQueue()
        self.cTrav.addCollider(self.camGroundColNp, self.camGroundHandler)

        # Uncomment this line to see the collision rays
        #self.ralphGroundColNp.show()
        #self.camGroundColNp.show()

        #Uncomment this line to show a visual representation of the
        #collisions occuring
        #self.cTrav.showCollisions(render)

        self.setAI()

    def activateCam(self):
        self.switchCam = not self.switchCam
        if self.switchCam is True:
            base.cam.setPosHpr(0, 0, 0, 0, 0, 0)
            base.cam.reparentTo(self.ralph)
            base.cam.setY(base.cam.getY() + 30)
            base.cam.setZ(base.cam.getZ() + 10)
            base.cam.setHpr(180, -15, 0)
        else:
            base.cam.reparentTo(render)
            base.cam.setPosHpr(17.79, -87.64, 90.16, 38.66, 325.36, 0)
            #base.camera.setPos(self.ralph.getX(),self.ralph.getY()+10,2)

    # Records the state of the arrow keys
    def setKey(self, key, value):
        self.keyMap[key] = value

    # Accepts arrow keys to move either the player or the menu cursor,
    # Also deals with grid checking and collision detection
    def move(self):

        # Get the time elapsed since last frame. We need this
        # for framerate-independent movement.
        elapsed = globalClock.getDt()

        # If the camera-left key is pressed, move camera left.
        # If the camera-right key is pressed, move camera right.
        if self.switchState is False:
            base.camera.lookAt(self.ralph)
            if self.keyMap["cam-left"] != 0:
                base.camera.setX(base.camera, -(elapsed * 20))
            if self.keyMap["cam-right"] != 0:
                base.camera.setX(base.camera, +(elapsed * 20))

        # save ralph's initial position so that we can restore it,
        # in case he falls off the map or runs into something.

        startpos = self.ralph.getPos()

        # If a move-key is pressed, move ralph in the specified direction.

        if self.keyMap["left"] != 0:
            self.ralph.setH(self.ralph.getH() + elapsed * 300)
        if self.keyMap["right"] != 0:
            self.ralph.setH(self.ralph.getH() - elapsed * 300)
        if self.keyMap["forward"] != 0:
            self.ralph.setY(self.ralph, -(elapsed * 25))

        # If ralph is moving, loop the run animation.
        # If he is standing still, stop the animation.

        if self.keyMap["forward"] != 0 or self.keyMap["left"] != 0 or self.keyMap["right"] != 0:
            if self.isMoving is False:
                self.ralph.loop("run")
                self.isMoving = True
        else:
            if self.isMoving:
                self.ralph.stop()
                self.ralph.pose("walk", 5)
                self.isMoving = False

        # If the camera is too far from ralph, move it closer.
        # If the camera is too close to ralph, move it farther.
        if self.switchState is False:
            camvec = self.ralph.getPos() - base.camera.getPos()
            camvec.setZ(0)
            camdist = camvec.length()
            camvec.normalize()
            if camdist > 10.0:
                base.camera.setPos(base.camera.getPos() + camvec * (camdist - 10))
                camdist = 10.0
            if camdist < 5.0:
                base.camera.setPos(base.camera.getPos() - camvec * (5 - camdist))
                camdist = 5.0

        # Now check for collisions.

        self.cTrav.traverse(render)

        # Adjust ralph's Z coordinate.  If ralph's ray hit terrain,
        # update his Z. If it hit anything else, or didn't hit anything, put
        # him back where he was last frame.

        #print(self.ralphGroundHandler.getNumEntries())

        entries = []
        for i in range(self.ralphGroundHandler.getNumEntries()):
            entry = self.ralphGroundHandler.getEntry(i)
            entries.append(entry)
        entries.sort(lambda x, y: cmp(y.getSurfacePoint(render).z,
                                      x.getSurfacePoint(render).z))
        if entries and entries[0].getIntoNode().getName() == "terrain":
            self.ralph.setZ(entries[0].getSurfacePoint(render).z)
        else:
            self.ralph.setPos(startpos)

        # Keep the camera at one foot above the terrain,
        # or two feet above ralph, whichever is greater.

        if self.switchState is False:
            entries = []
            for i in range(self.camGroundHandler.getNumEntries()):
                entry = self.camGroundHandler.getEntry(i)
                entries.append(entry)
            entries.sort(lambda x, y: cmp(y.getSurfacePoint(render).z,
                                          x.getSurfacePoint(render).z))
            if entries and entries[0].getIntoNode().getName() == "terrain":
                base.camera.setZ(entries[0].getSurfacePoint(render).z + 1.0)
            if base.camera.getZ() < self.ralph.getZ() + 2.0:
                base.camera.setZ(self.ralph.getZ() + 2.0)

            # The camera should look in ralph's direction,
            # but it should also try to stay horizontal, so look at
            # a floater which hovers above ralph's head.

            self.floater.setPos(self.ralph.getPos())
            self.floater.setZ(self.ralph.getZ() + 2.0)
            base.camera.setZ(base.camera.getZ())
            base.camera.lookAt(self.floater)

        self.ralph.setP(0)
        return Task.cont

    def setAI(self):
        # Creating AI World
        self.AIworld = AIWorld(render)

        self.accept("space", self.setMove)
        self.AIchar = AICharacter("ralph", self.ralph, 60, 0.05, 25)
        self.AIworld.addAiChar(self.AIchar)
        self.AIbehaviors = self.AIchar.getAiBehaviors()

        self.AIbehaviors.initPathFind("models/navmesh.csv")

        # AI World update
        taskMgr.add(self.AIUpdate, "AIUpdate")

    def setMove(self):
        self.AIbehaviors.addStaticObstacle(self.box)
        self.AIbehaviors.addStaticObstacle(self.box1)
        self.AIbehaviors.pathFindTo(self.pointer)
        self.ralph.loop("run")

    # To update the AIWorld
    def AIUpdate(self, task):
        self.AIworld.update()
        self.move()

        if self.path_no == 1 and self.AIbehaviors.behaviorStatus("pathfollow") == "done":
            self.path_no = 2
            self.AIbehaviors.pathFindTo(self.pointer1, "addPath")
            print("inside")

        if self.path_no == 2 and self.AIbehaviors.behaviorStatus("pathfollow") == "done":
            print("inside2")
            self.path_no = 1
            self.AIbehaviors.pathFindTo(self.pointer, "addPath")

        return Task.cont


w = World()
base.run()

The full working demo can be downloaded at:

https://sites.google.com/site/etcpandai/documentation/pathfinding/UnevenTerrainPathFinding.zip?attredirects=0&d=1