Source code for direct.tkwidgets.Dial
"""
Dial Class: Velocity style controller for floating point values with
a label, entry (validated), and scale
"""
__all__ = ['Dial', 'AngleDial', 'DialWidget']
from direct.showbase.TkGlobal import *
from .Valuator import Valuator, VALUATOR_MINI, VALUATOR_FULL
from direct.task import Task
import math, operator, Pmw
TWO_PI = 2.0 * math.pi
ONEPOINTFIVE_PI = 1.5 * math.pi
POINTFIVE_PI = 0.5 * math.pi
INNER_SF = 0.2
DIAL_FULL_SIZE = 45
DIAL_MINI_SIZE = 30
[docs]class Dial(Valuator):
"""
Valuator widget which includes an angle dial and an entry for setting
floating point values
"""
[docs] def __init__(self, parent = None, **kw):
INITOPT = Pmw.INITOPT
optiondefs = (
('style', VALUATOR_FULL, INITOPT),
('base', 0.0, self.setBase),
('delta', 1.0, self.setDelta),
('fSnap', 0, self.setSnap),
('fRollover', 1, self.setRollover),
)
self.defineoptions(kw, optiondefs)
Valuator.__init__(self, parent)
self.initialiseoptions(Dial)
[docs] def createValuator(self):
self._valuator = self.createcomponent(
'valuator',
(('dial', 'valuator'),),
None,
DialWidget,
(self.interior(),),
style = self['style'],
command = self.setEntry,
value = self['value'])
self._valuator._widget.bind('<Double-ButtonPress-1>', self.mouseReset)
[docs] def packValuator(self):
if self['style'] == VALUATOR_FULL:
self._valuator.grid(rowspan = 2, columnspan = 2,
padx = 2, pady = 2)
if self._label:
self._label.grid(row = 0, column = 2, sticky = EW)
self._entry.grid(row = 1, column = 2, sticky = EW)
self.interior().columnconfigure(2, weight = 1)
else:
if self._label:
self._label.grid(row=0, column=0, sticky = EW)
self._entry.grid(row=0, column=1, sticky = EW)
self._valuator.grid(row=0, column=2, padx = 2, pady = 2)
self.interior().columnconfigure(0, weight = 1)
[docs] def addValuatorPropertiesToDialog(self):
self.addPropertyToDialog(
'base',
{ 'widget': self._valuator,
'type': 'real',
'help': 'Dial value = base + delta * numRevs'})
self.addPropertyToDialog(
'delta',
{ 'widget': self._valuator,
'type': 'real',
'help': 'Dial value = base + delta * numRevs'})
self.addPropertyToDialog(
'numSegments',
{ 'widget': self._valuator,
'type': 'integer',
'help': 'Number of segments to divide dial into.'})
[docs] def addValuatorMenuEntries(self):
# The popup menu
self._fSnap = IntVar()
self._fSnap.set(self['fSnap'])
self._popupMenu.add_checkbutton(label = 'Snap',
variable = self._fSnap,
command = self._setSnap)
self._fRollover = IntVar()
self._fRollover.set(self['fRollover'])
if self['fAdjustable']:
self._popupMenu.add_checkbutton(label = 'Rollover',
variable = self._fRollover,
command = self._setRollover)
[docs] def setBase(self):
""" Set Dial base value: value = base + delta * numRevs """
self._valuator['base'] = self['base']
[docs] def setDelta(self):
""" Set Dial delta value: value = base + delta * numRevs """
self._valuator['delta'] = self['delta']
def _setSnap(self):
""" Menu command to turn Dial angle snap on/off """
self._valuator['fSnap'] = self._fSnap.get()
[docs] def setSnap(self):
""" Turn Dial angle snap on/off """
self._fSnap.set(self['fSnap'])
# Call menu command to send down to valuator
self._setSnap()
def _setRollover(self):
"""
Menu command to turn Dial rollover on/off (i.e. does value accumulate
every time you complete a revolution of the dial?)
"""
self._valuator['fRollover'] = self._fRollover.get()
[docs] def setRollover(self):
""" Turn Dial rollover (accumulation of a sum) on/off """
self._fRollover.set(self['fRollover'])
# Call menu command to send down to valuator
self._setRollover()
[docs]class AngleDial(Dial):
[docs] def __init__(self, parent = None, **kw):
# Set the typical defaults for a 360 degree angle dial
optiondefs = (
('delta', 360.0, None),
('fRollover', 0, None),
('dial_numSegments', 12, None),
)
self.defineoptions(kw, optiondefs)
# Initialize the superclass
Dial.__init__(self, parent)
# Needed because this method checks if self.__class__ is myClass
# where myClass is the argument passed into inialiseoptions
self.initialiseoptions(AngleDial)
[docs]class DialWidget(Pmw.MegaWidget):
[docs] def __init__(self, parent = None, **kw):
#define the megawidget options
INITOPT = Pmw.INITOPT
optiondefs = (
# Appearance
('style', VALUATOR_FULL, INITOPT),
('size', None, INITOPT),
('relief', SUNKEN, self.setRelief),
('borderwidth', 2, self.setBorderwidth),
('background', 'white', self.setBackground),
# Number of segments the dial is divided into
('numSegments', 10, self.setNumSegments),
# Behavior
# Initial value of dial, use self.set to change value
('value', 0.0, INITOPT),
('numDigits', 2, self.setNumDigits),
# Dial specific options
('base', 0.0, None),
('delta', 1.0, None),
# Snap to angle on/off
('fSnap', 0, None),
# Do values rollover (i.e. accumulate) with multiple revolutions
('fRollover', 1, None),
# Command to execute on dial updates
('command', None, None),
# Extra data to be passed to command function
('commandData', [], None),
# Callback's to execute during mouse interaction
('preCallback', None, None),
('postCallback', None, None),
# Extra data to be passed to callback function, needs to be a list
('callbackData', [], None),
)
self.defineoptions(kw, optiondefs)
# Initialize the superclass
Pmw.MegaWidget.__init__(self, parent)
# Set up some local and instance variables
# Create the components
interior = self.interior()
# Current value
self.value = self['value']
# Running total which increments/decrements every time around dial
self.rollCount = 0
# Base dial size on style, if size not specified,
if not self['size']:
if self['style'] == VALUATOR_FULL:
size = DIAL_FULL_SIZE
else:
size = DIAL_MINI_SIZE
else:
size = self['size']
# Radius of the dial
radius = self.radius = int(size/2.0)
# Radius of the inner knob
inner_radius = max(3, radius * INNER_SF)
# The canvas
self._widget = self.createcomponent('canvas', (), None,
Canvas, (interior,),
width = size, height = size,
background = self['background'],
highlightthickness = 0,
scrollregion = (-radius, -radius,
radius, radius))
self._widget.pack(expand = 1, fill = BOTH)
# The dial face (no outline/fill, primarily for binding mouse events)
self._widget.create_oval(-radius, -radius, radius, radius,
outline = '',
tags = ('dial',))
# The indicator
self._widget.create_line(0, 0, 0, -radius, width = 2,
tags = ('indicator', 'dial'))
# The central knob
self._widget.create_oval(-inner_radius, -inner_radius,
inner_radius, inner_radius,
fill = 'grey50',
tags = ('knob',))
# Add event bindings
self._widget.tag_bind('dial', '<ButtonPress-1>', self.mouseDown)
self._widget.tag_bind('dial', '<B1-Motion>', self.mouseMotion)
self._widget.tag_bind('dial', '<Shift-B1-Motion>',
self.shiftMouseMotion)
self._widget.tag_bind('dial', '<ButtonRelease-1>', self.mouseUp)
self._widget.tag_bind('knob', '<ButtonPress-1>', self.knobMouseDown)
self._widget.tag_bind('knob', '<B1-Motion>', self.updateDialSF)
self._widget.tag_bind('knob', '<ButtonRelease-1>', self.knobMouseUp)
self._widget.tag_bind('knob', '<Enter>', self.highlightKnob)
self._widget.tag_bind('knob', '<Leave>', self.restoreKnob)
# Make sure input variables processed
self.initialiseoptions(DialWidget)
[docs] def set(self, value, fCommand = 1):
"""
self.set(value, fCommand = 1)
Set dial to new value, execute command if fCommand == 1
"""
# Adjust for rollover
if not self['fRollover']:
if value > self['delta']:
self.rollCount = 0
value = self['base'] + ((value - self['base']) % self['delta'])
# Send command if any
if fCommand and (self['command'] != None):
self['command'](*[value] + self['commandData'])
# Record value
self.value = value
## Canvas callback functions
# Dial
[docs] def mouseDown(self, event):
self._onButtonPress()
self.lastAngle = dialAngle = self.computeDialAngle(event)
self.computeValueFromAngle(dialAngle)
[docs] def mouseMotion(self, event, fShift = 0):
dialAngle = self.computeDialAngle(event, fShift)
self.computeValueFromAngle(dialAngle)
[docs] def computeDialAngle(self, event, fShift = 0):
x = self._widget.canvasx(event.x)
y = self._widget.canvasy(event.y)
rawAngle = math.atan2(y, x)
# Snap to grid
# Convert to dial coords to do snapping
dialAngle = rawAngle + POINTFIVE_PI
if operator.xor(self['fSnap'], fShift):
dialAngle = round(dialAngle / self.snapAngle) * self.snapAngle
return dialAngle
[docs] def computeValueFromAngle(self, dialAngle):
delta = self['delta']
dialAngle = dialAngle % TWO_PI
# Check for rollover, if necessary
if (self.lastAngle > ONEPOINTFIVE_PI) and (dialAngle < POINTFIVE_PI):
self.rollCount += 1
elif (self.lastAngle < POINTFIVE_PI) and (dialAngle > ONEPOINTFIVE_PI):
self.rollCount -= 1
self.lastAngle = dialAngle
# Update value
newValue = self['base'] + (self.rollCount + (dialAngle/TWO_PI)) * delta
self.set(newValue)
[docs] def updateIndicator(self, value):
# compute new indicator angle
delta = self['delta']
factors = divmod(value - self['base'], delta)
self.rollCount = factors[0]
self.updateIndicatorRadians((factors[1]/delta) * TWO_PI)
[docs] def updateIndicatorDegrees(self, degAngle):
self.updateIndicatorRadians(degAngle * (math.pi/180.0))
[docs] def updateIndicatorRadians(self, dialAngle):
rawAngle = dialAngle - POINTFIVE_PI
# Compute end points
endx = math.cos(rawAngle) * self.radius
endy = math.sin(rawAngle) * self.radius
# Draw new indicator
self._widget.coords('indicator', endx * INNER_SF, endy * INNER_SF,
endx, endy)
# Knob velocity controller
[docs] def knobMouseDown(self, event):
self._onButtonPress()
self.knobSF = 0.0
self.updateTask = taskMgr.add(self.updateDialTask, 'updateDial')
self.updateTask.lastTime = globalClock.getFrameTime()
[docs] def updateDialTask(self, state):
# Update value
currT = globalClock.getFrameTime()
dt = currT - state.lastTime
self.set(self.value + self.knobSF * dt)
state.lastTime = currT
return Task.cont
[docs] def updateDialSF(self, event):
x = self._widget.canvasx(event.x)
y = self._widget.canvasy(event.y)
offset = max(0, abs(x) - Valuator.deadband)
if offset == 0:
return 0
sf = math.pow(Valuator.sfBase,
self.minExp + offset/Valuator.sfDist)
if x > 0:
self.knobSF = sf
else:
self.knobSF = -sf
[docs] def knobMouseUp(self, event):
taskMgr.remove(self.updateTask)
self.knobSF = 0.0
self._onButtonRelease()
[docs] def setNumDigits(self):
# Set minimum exponent to use in velocity task
self.minExp = math.floor(-self['numDigits']/
math.log10(Valuator.sfBase))
# Methods to modify dial characteristics
[docs] def setNumSegments(self):
self._widget.delete('ticks')
# Based upon input snap angle, how many ticks
numSegments = self['numSegments']
# Compute snapAngle (radians)
self.snapAngle = snapAngle = TWO_PI / numSegments
# Create the ticks at the snap angles
for ticknum in range(numSegments):
angle = snapAngle * ticknum
# convert to canvas coords
angle = angle - POINTFIVE_PI
# Compute tick endpoints
startx = math.cos(angle) * self.radius
starty = math.sin(angle) * self.radius
# Elongate ticks at 90 degree points
if (angle % POINTFIVE_PI) == 0.0:
sf = 0.6
else:
sf = 0.8
endx = startx * sf
endy = starty * sf
self._widget.create_line(startx, starty, endx, endy,
tags = ('ticks','dial'))
# To call user callbacks
def _onButtonPress(self, *args):
""" User redefinable callback executed on button press """
if self['preCallback']:
self['preCallback'](*self['callbackData'])
def _onButtonRelease(self, *args):
""" User redefinable callback executed on button release """
if self['postCallback']:
self['postCallback'](*self['callbackData'])
if __name__ == '__main__':
tl = Toplevel()
d = Dial(tl)
d2 = Dial(tl, dial_numSegments = 12, max = 360,
dial_fRollover = 0, value = 180)
d3 = Dial(tl, dial_numSegments = 12, max = 90, min = -90,
dial_fRollover = 0)
d4 = Dial(tl, dial_numSegments = 16, max = 256,
dial_fRollover = 0)
d.pack(expand = 1, fill = X)
d2.pack(expand = 1, fill = X)
d3.pack(expand = 1, fill = X)
d4.pack(expand = 1, fill = X)