Source code for direct.showbase.ProfileSession

from __future__ import print_function
from panda3d.core import TrueClock
from direct.directnotify.DirectNotifyGlobal import directNotify
from direct.showbase.PythonUtil import (
    StdoutCapture, _installProfileCustomFuncs,_removeProfileCustomFuncs,
    _getProfileResultFileInfo, _setProfileResultsFileInfo)
import profile
import pstats
import sys

if sys.version_info >= (3, 0):
    import builtins
else:
    import __builtin__ as builtins


[docs]class PercentStats(pstats.Stats): # prints more useful output when sampled durations are shorter than a millisecond # lots of this is copied from Python's pstats.py
[docs] def setTotalTime(self, tt): # use this to set 'total time' to base time percentages on # allows profiles to show timing based on percentages of duration of another profile self._totalTime = tt
[docs] def add(self, *args, **kArgs): pstats.Stats.add(self, *args, **kArgs) # DCR -- don't need to record filenames self.files = []
[docs] def print_stats(self, *amount): for filename in self.files: print(filename) if self.files: print() indent = ' ' * 8 for func in self.top_level: print(indent, pstats.func_get_function_name(func)) print(indent, self.total_calls, "function calls", end=' ') if self.total_calls != self.prim_calls: print("(%d primitive calls)" % self.prim_calls, end=' ') # DCR #print "in %.3f CPU seconds" % self.total_tt print("in %s CPU milliseconds" % (self.total_tt * 1000.)) if self._totalTime != self.total_tt: print(indent, 'percentages are of %s CPU milliseconds' % (self._totalTime * 1000)) print() width, list = self.get_print_list(amount) if list: self.print_title() for func in list: self.print_line(func) print() # DCR #print return self
[docs] def f8(self, x): if self._totalTime == 0.: # profiling was too quick for clock resolution... return ' Inf%' return "%7.2f%%" % ((x*100.) / self._totalTime)
[docs] @staticmethod def func_std_string(func_name): # match what old profile produced return "%s:%d(%s)" % func_name
[docs] def print_line(self, func): cc, nc, tt, ct, callers = self.stats[func] c = str(nc) # DCR f8 = self.f8 if nc != cc: c = c + '/' + str(cc) print(c.rjust(9), end=' ') print(f8(tt), end=' ') if nc == 0: print(' '*8, end=' ') else: print(f8(tt/nc), end=' ') print(f8(ct), end=' ') if cc == 0: print(' '*8, end=' ') else: print(f8(ct/cc), end=' ') # DCR #print func_std_string(func) print(PercentStats.func_std_string(func))
[docs]class ProfileSession: # class that encapsulates a profile of a single callable using Python's standard # 'profile' module # # defers formatting of profile results until they are requested # # implementation sidesteps memory leak in Python profile module, # and redirects file output to RAM file for efficiency TrueClock = TrueClock.getGlobalPtr() notify = directNotify.newCategory("ProfileSession")
[docs] def __init__(self, name, func=None, logAfterProfile=False): self._func = func self._name = name self._logAfterProfile = logAfterProfile self._filenameBase = 'profileData-%s-%s' % (self._name, id(self)) self._refCount = 0 # if true, accumulate profile results every time we run # if false, throw out old results every time we run self._aggregate = False self._lines = 500 self._sorts = ['cumulative', 'time', 'calls'] self._callInfo = True self._totalTime = None self._reset() self.acquire()
[docs] def getReference(self): # call this when you want to store a new reference to this session that will # manage its acquire/release reference count independently of an existing reference self.acquire() return self
[docs] def acquire(self): self._refCount += 1
[docs] def release(self): self._refCount -= 1 if not self._refCount: self._destroy()
def _destroy(self): del self._func del self._name del self._filenameBase del self._filenameCounter del self._filenames del self._duration del self._filename2ramFile del self._resultCache del self._successfulProfiles def _reset(self): self._filenameCounter = 0 self._filenames = [] # index of next file to be added to stats object self._statFileCounter = 0 self._successfulProfiles = 0 self._duration = None self._filename2ramFile = {} self._stats = None self._resultCache = {} def _getNextFilename(self): filename = '%s-%s' % (self._filenameBase, self._filenameCounter) self._filenameCounter += 1 return filename
[docs] def run(self): # make sure this instance doesn't get destroyed inside self._func self.acquire() if not self._aggregate: self._reset() # if we're already profiling, just run the func and don't profile if 'globalProfileSessionFunc' in builtins.__dict__: self.notify.warning('could not profile %s' % self._func) result = self._func() if self._duration is None: self._duration = 0. else: # put the function in the global namespace so that profile can find it assert hasattr(self._func, '__call__') builtins.globalProfileSessionFunc = self._func builtins.globalProfileSessionResult = [None] # set up the RAM file self._filenames.append(self._getNextFilename()) filename = self._filenames[-1] _installProfileCustomFuncs(filename) # do the profiling Profile = profile.Profile statement = 'globalProfileSessionResult[0]=globalProfileSessionFunc()' sort = -1 retVal = None # this is based on profile.run, the code is replicated here to allow us to # eliminate a memory leak prof = Profile() try: prof = prof.run(statement) except SystemExit: pass # this has to be run immediately after profiling for the timings to be accurate # tell the Profile object to generate output to the RAM file prof.dump_stats(filename) # eliminate the memory leak del prof.dispatcher # store the RAM file for later profData = _getProfileResultFileInfo(filename) self._filename2ramFile[filename] = profData # calculate the duration (this is dependent on the internal Python profile data format. # see profile.py and pstats.py, this was copied from pstats.Stats.strip_dirs) maxTime = 0. for cc, nc, tt, ct, callers in profData[1].values(): if ct > maxTime: maxTime = ct self._duration = maxTime # clean up the RAM file support _removeProfileCustomFuncs(filename) # clean up the globals result = globalProfileSessionResult[0] del builtins.__dict__['globalProfileSessionFunc'] del builtins.__dict__['globalProfileSessionResult'] self._successfulProfiles += 1 if self._logAfterProfile: self.notify.info(self.getResults()) self.release() return result
[docs] def getDuration(self): return self._duration
[docs] def profileSucceeded(self): return self._successfulProfiles > 0
def _restoreRamFile(self, filename): # set up the RAM file _installProfileCustomFuncs(filename) # install the stored RAM file from self.run() _setProfileResultsFileInfo(filename, self._filename2ramFile[filename]) def _discardRamFile(self, filename): # take down the RAM file _removeProfileCustomFuncs(filename) # and discard it del self._filename2ramFile[filename]
[docs] def setName(self, name): self._name = name
[docs] def getName(self): return self._name
[docs] def setFunc(self, func): self._func = func
[docs] def getFunc(self): return self._func
[docs] def setAggregate(self, aggregate): self._aggregate = aggregate
[docs] def getAggregate(self): return self._aggregate
[docs] def setLogAfterProfile(self, logAfterProfile): self._logAfterProfile = logAfterProfile
[docs] def getLogAfterProfile(self): return self._logAfterProfile
[docs] def setLines(self, lines): self._lines = lines
[docs] def getLines(self): return self._lines
[docs] def setSorts(self, sorts): self._sorts = sorts
[docs] def getSorts(self): return self._sorts
[docs] def setShowCallInfo(self, showCallInfo): self._showCallInfo = showCallInfo
[docs] def getShowCallInfo(self): return self._showCallInfo
[docs] def setTotalTime(self, totalTime=None): self._totalTime = totalTime
[docs] def resetTotalTime(self): self._totalTime = None
[docs] def getTotalTime(self): return self._totalTime
[docs] def aggregate(self, other): # pull in stats from another ProfileSession other._compileStats() self._compileStats() self._stats.add(other._stats)
def _compileStats(self): # make sure our stats object exists and is up-to-date statsChanged = (self._statFileCounter < len(self._filenames)) if self._stats is None: for filename in self._filenames: self._restoreRamFile(filename) self._stats = PercentStats(*self._filenames) self._statFileCounter = len(self._filenames) for filename in self._filenames: self._discardRamFile(filename) else: while self._statFileCounter < len(self._filenames): filename = self._filenames[self._statFileCounter] self._restoreRamFile(filename) self._stats.add(filename) self._discardRamFile(filename) if statsChanged: self._stats.strip_dirs() # throw out any cached result strings self._resultCache = {} return statsChanged
[docs] def getResults(self, lines=Default, sorts=Default, callInfo=Default, totalTime=Default): if not self.profileSucceeded(): output = '%s: profiler already running, could not profile' % self._name else: if lines is Default: lines = self._lines if sorts is Default: sorts = self._sorts if callInfo is Default: callInfo = self._callInfo if totalTime is Default: totalTime = self._totalTime self._compileStats() if totalTime is None: totalTime = self._stats.total_tt # make sure the arguments will hash efficiently if callers provide different types lines = int(lines) sorts = list(sorts) callInfo = bool(callInfo) totalTime = float(totalTime) k = str((lines, sorts, callInfo, totalTime)) if k in self._resultCache: # we've already created this output string, get it from the cache output = self._resultCache[k] else: # now get human-readable output from the profile stats # capture print output to a string sc = StdoutCapture() # print the info to stdout s = self._stats # make sure our percentages are relative to the correct total time s.setTotalTime(totalTime) for sort in sorts: s.sort_stats(sort) s.print_stats(lines) if callInfo: s.print_callees(lines) s.print_callers(lines) # make a copy of the print output output = sc.getString() # restore stdout to what it was before sc.destroy() # cache this result self._resultCache[k] = output return output