Bullet Queries
Bullet offers a bunch of different queries for retrieving information about collision objects. A common usecase is sensors needed by game logic components. For example to find out if the space in front of an NPC object is blocked by a solid obstacle, or to find out if an NPC can see some other object.
Ray Test
Raycasting is to shoot a ray from one position (the from-position) to another position (the to-position). Both the from-position and the to-position have to be specified in global coordinates. The ray test methods will then return a result object which contains information about which objects the ray has hit.
There are two different ray test method: The first method (rayTestAll
)
returns all collision objects hit by the ray. But sometimes we are only
interested in the first collision object hit by the ray. Then we can use the
second ray test method (rayTestClosest
).
Example for closest hit:
LPoint3 pFrom(0, 0, 0);
LPoint3 pTo(10, 0, 0);
BulletAllHitsRayResult result = world->ray_test_closest(pFrom, pTo);
Example for all hits:
LPoint3 pFrom = LPoint3(0, 0, 0);
LPoint3 pTo = pFrom + LVector3d(1, 0, 0) * 99999;
BulletAllHitsRayResult result = world->ray_test_all(pFrom, pTo);
Often users want to pick or select an object by clicking on it with the mouse.
We can use the rayTestClosest
to find the collision object which is “under”
the mouse pointer, but we have to convert the coordinates in camera space to
global coordinates world space. The following example shows how this can be
done.
TODO
Sweep Test
The sweep test is similar to the ray test. There are two differences: (1) The
sweep test does not use an infinite thin ray, like the ray test, but checks for
collisions with a convex shape which is “moved” along the from from-position to
to-position. (2) The sweep test wants to have “from” and “to” specified as
TransformState
. The sweep test can for example be used to predict if an
object would collide with something else if it was moving from it’s current
position to some other position.
The sweep test can only be used with shapes that are convex, otherwise the call will fail. Many primitive shapes (sphere, box, etc.) are convex, but a triangle mesh is not. (If you have geometry that is convex, use a BulletConvexHullShape instead of a BulletTriangleMeshShape.)
Contact Test
There are two contact tests. One which checks if a collision objects is in contact with other collision objects, and another which checks for a pair of collision objects if they are in contact.
Filtering
The test methods on BulletWorld also take an optional mask
argument that can
be used to limit which groups are matched against (see
Bullet Collision Filtering for information about collision groups). The default
is BitMask32.allOn()
, which indicates that bodies in all groups are
considered for the test.
For example, the following query will consider object A and C, but ignore object B:
# These three bodies are in different groups
objA.setCollideMask(BitMask32.bit(0))
objB.setCollideMask(BitMask32.bit(1))
objC.setCollideMask(BitMask32.bit(2))
fro = (0, 0, 0)
to = (1, 0, 0)
mask = BitMask32.bit(0) | BitMask32.bit(2)
result = world.rayTestClosest(fro, to, mask)
Of particular note if you are using the groups-mask
filter algorithm is that
the mask matches directly against the collide mask of the bodies, ignoring the
group matrix entirely. For example, if you specify BitMask32.bit(1)
, it will
consider all bodies that have a collide mask with this bit enabled (ie. all
bodies that are in group 1). It does not behave as though the ray itself were a
body in group 1.