""" This module defines a Python-level wrapper around the C++
:class:`~panda3d.core.AsyncTaskManager` interface. It replaces the old
full-Python implementation of the Task system.
For more information about the task system, consult the
:ref:`tasks-and-event-handling` page in the programming manual.
"""
__all__ = ['Task', 'TaskManager',
'cont', 'done', 'again', 'pickup', 'exit',
'sequence', 'loop', 'pause']
from direct.directnotify.DirectNotifyGlobal import *
from direct.showbase.PythonUtil import *
from direct.showbase.MessengerGlobal import messenger
import types
import random
import importlib
import sys
# On Android, there's no use handling SIGINT, and in fact we can't, since we
# run the application in a separate thread from the main thread.
if hasattr(sys, 'getandroidapilevel'):
signal = None
else:
try:
import _signal as signal
except ImportError:
signal = None
from panda3d.core import *
from direct.extensions_native import HTTPChannel_extensions
[docs]def print_exc_plus():
"""
Print the usual traceback information, followed by a listing of all the
local variables in each frame.
"""
import traceback
tb = sys.exc_info()[2]
while 1:
if not tb.tb_next:
break
tb = tb.tb_next
stack = []
f = tb.tb_frame
while f:
stack.append(f)
f = f.f_back
stack.reverse()
traceback.print_exc()
print("Locals by frame, innermost last")
for frame in stack:
print("")
print("Frame %s in %s at line %s" % (frame.f_code.co_name,
frame.f_code.co_filename,
frame.f_lineno))
for key, value in list(frame.f_locals.items()):
#We have to be careful not to cause a new error in our error
#printer! Calling str() on an unknown object could cause an
#error we don't want.
try:
valueStr = str(value)
except:
valueStr = "<ERROR WHILE PRINTING VALUE>"
print("\t%20s = %s" % (key, valueStr))
# For historical purposes, we remap the C++-defined enumeration to
# these Python names, and define them both at the module level, here,
# and at the class level (below). The preferred access is via the
# class level.
done = AsyncTask.DSDone
cont = AsyncTask.DSCont
again = AsyncTask.DSAgain
pickup = AsyncTask.DSPickup
exit = AsyncTask.DSExit
#: Task aliases to :class:`panda3d.core.PythonTask` for historical purposes.
Task = PythonTask
# Copy the module-level enums above into the class level. This funny
# syntax is necessary because it's a C++-wrapped extension type, not a
# true Python class.
# We can't override 'done', which is already a known method. We have a
# special check in PythonTask for when the method is being returned.
#Task.DtoolClassDict['done'] = done
Task.DtoolClassDict['cont'] = cont
Task.DtoolClassDict['again'] = again
Task.DtoolClassDict['pickup'] = pickup
Task.DtoolClassDict['exit'] = exit
# Alias the AsyncTaskPause constructor as Task.pause().
pause = AsyncTaskPause
Task.DtoolClassDict['pause'] = staticmethod(pause)
gather = Task.gather
shield = Task.shield
[docs]def sequence(*taskList):
seq = AsyncTaskSequence('sequence')
for task in taskList:
seq.addTask(task)
return seq
Task.DtoolClassDict['sequence'] = staticmethod(sequence)
[docs]def loop(*taskList):
seq = AsyncTaskSequence('loop')
for task in taskList:
seq.addTask(task)
seq.setRepeatCount(-1)
return seq
Task.DtoolClassDict['loop'] = staticmethod(loop)
[docs]class TaskManager:
notify = directNotify.newCategory("TaskManager")
taskTimerVerbose = ConfigVariableBool('task-timer-verbose', False)
extendedExceptions = ConfigVariableBool('extended-exceptions', False)
pStatsTasks = ConfigVariableBool('pstats-tasks', False)
MaxEpochSpeed = 1.0/30.0
[docs] def __init__(self):
self.mgr = AsyncTaskManager.getGlobalPtr()
self.resumeFunc = None
self.globalClock = self.mgr.getClock()
self.stepping = False
self.running = False
self.destroyed = False
self.fKeyboardInterrupt = False
self.interruptCount = 0
if signal:
self.__prevHandler = signal.default_int_handler
self._frameProfileQueue = []
# this will be set when it's safe to import StateVar
self._profileFrames = None
self._frameProfiler = None
self._profileTasks = None
self._taskProfiler = None
self._taskProfileInfo = ScratchPad(
taskId = None,
profiled = False,
session = None,
)
[docs] def finalInit(self):
# This function should be called once during startup, after
# most things are imported.
from direct.fsm.StatePush import StateVar
self._profileTasks = StateVar(False)
self.setProfileTasks(ConfigVariableBool('profile-task-spikes', 0).getValue())
self._profileFrames = StateVar(False)
self.setProfileFrames(ConfigVariableBool('profile-frames', 0).getValue())
[docs] def destroy(self):
# This should be safe to call multiple times.
self.running = False
self.notify.info("TaskManager.destroy()")
self.destroyed = True
self._frameProfileQueue.clear()
self.mgr.cleanup()
[docs] def setClock(self, clockObject):
self.mgr.setClock(clockObject)
self.globalClock = clockObject
clock = property(lambda self: self.mgr.getClock(), setClock)
[docs] def invokeDefaultHandler(self, signalNumber, stackFrame):
print('*** allowing mid-frame keyboard interrupt.')
# Restore default interrupt handler
if signal:
signal.signal(signal.SIGINT, self.__prevHandler)
# and invoke it
raise KeyboardInterrupt
[docs] def keyboardInterruptHandler(self, signalNumber, stackFrame):
self.fKeyboardInterrupt = 1
self.interruptCount += 1
if self.interruptCount == 1:
print('* interrupt by keyboard')
elif self.interruptCount == 2:
print('** waiting for end of frame before interrupting...')
# The user must really want to interrupt this process
# Next time around invoke the default handler
signal.signal(signal.SIGINT, self.invokeDefaultHandler)
[docs] def getCurrentTask(self):
""" Returns the task currently executing on this thread, or
None if this is being called outside of the task manager. """
return Thread.getCurrentThread().getCurrentTask()
[docs] def hasTaskChain(self, chainName):
""" Returns true if a task chain with the indicated name has
already been defined, or false otherwise. Note that
setupTaskChain() will implicitly define a task chain if it has
not already been defined, or modify an existing one if it has,
so in most cases there is no need to check this method
first. """
return self.mgr.findTaskChain(chainName) is not None
[docs] def setupTaskChain(self, chainName, numThreads = None, tickClock = None,
threadPriority = None, frameBudget = None,
frameSync = None, timeslicePriority = None):
"""Defines a new task chain. Each task chain executes tasks
potentially in parallel with all of the other task chains (if
numThreads is more than zero). When a new task is created, it
may be associated with any of the task chains, by name (or you
can move a task to another task chain with
task.setTaskChain()). You can have any number of task chains,
but each must have a unique name.
numThreads is the number of threads to allocate for this task
chain. If it is 1 or more, then the tasks on this task chain
will execute in parallel with the tasks on other task chains.
If it is greater than 1, then the tasks on this task chain may
execute in parallel with themselves (within tasks of the same
sort value).
If tickClock is True, then this task chain will be responsible
for ticking the global clock each frame (and thereby
incrementing the frame counter). There should be just one
task chain responsible for ticking the clock, and usually it
is the default, unnamed task chain.
threadPriority specifies the priority level to assign to
threads on this task chain. It may be one of TPLow, TPNormal,
TPHigh, or TPUrgent. This is passed to the underlying
threading system to control the way the threads are scheduled.
frameBudget is the maximum amount of time (in seconds) to
allow this task chain to run per frame. Set it to -1 to mean
no limit (the default). It's not directly related to
threadPriority.
frameSync is true to force the task chain to sync to the
clock. When this flag is false, the default, the task chain
will finish all of its tasks and then immediately start from
the first task again, regardless of the clock frame. When it
is true, the task chain will finish all of its tasks and then
wait for the clock to tick to the next frame before resuming
the first task. This only makes sense for threaded tasks
chains; non-threaded task chains are automatically
synchronous.
timeslicePriority is False in the default mode, in which each
task runs exactly once each frame, round-robin style,
regardless of the task's priority value; or True to change the
meaning of priority so that certain tasks are run less often,
in proportion to their time used and to their priority value.
See AsyncTaskManager.setTimeslicePriority() for more.
"""
chain = self.mgr.makeTaskChain(chainName)
if numThreads is not None:
chain.setNumThreads(numThreads)
if tickClock is not None:
chain.setTickClock(tickClock)
if threadPriority is not None:
chain.setThreadPriority(threadPriority)
if frameBudget is not None:
chain.setFrameBudget(frameBudget)
if frameSync is not None:
chain.setFrameSync(frameSync)
if timeslicePriority is not None:
chain.setTimeslicePriority(timeslicePriority)
[docs] def hasTaskNamed(self, taskName):
"""Returns true if there is at least one task, active or
sleeping, with the indicated name. """
return bool(self.mgr.findTask(taskName))
[docs] def getTasksNamed(self, taskName):
"""Returns a list of all tasks, active or sleeping, with the
indicated name. """
return list(self.mgr.findTasks(taskName))
[docs] def getTasksMatching(self, taskPattern):
"""Returns a list of all tasks, active or sleeping, with a
name that matches the pattern, which can include standard
shell globbing characters like \\*, ?, and []. """
return list(self.mgr.findTasksMatching(GlobPattern(taskPattern)))
[docs] def getAllTasks(self):
"""Returns list of all tasks, active and sleeping, in
arbitrary order. """
return list(self.mgr.getTasks())
[docs] def getTasks(self):
"""Returns list of all active tasks in arbitrary order. """
return list(self.mgr.getActiveTasks())
[docs] def getDoLaters(self):
"""Returns list of all sleeping tasks in arbitrary order. """
return list(self.mgr.getSleepingTasks())
[docs] def doMethodLater(self, delayTime, funcOrTask, name, extraArgs = None,
sort = None, priority = None, taskChain = None,
uponDeath = None, appendTask = False, owner = None):
"""Adds a task to be performed at some time in the future.
This is identical to `add()`, except that the specified
delayTime is applied to the Task object first, which means
that the task will not begin executing until at least the
indicated delayTime (in seconds) has elapsed.
After delayTime has elapsed, the task will become active, and
will run in the soonest possible frame thereafter. If you
wish to specify a task that will run in the next frame, use a
delayTime of 0.
"""
if delayTime < 0:
assert self.notify.warning('doMethodLater: added task: %s with negative delay: %s' % (name, delayTime))
task = self.__setupTask(funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath)
task.setDelay(delayTime)
self.mgr.add(task)
return task
do_method_later = doMethodLater
[docs] def add(self, funcOrTask, name = None, sort = None, extraArgs = None,
priority = None, uponDeath = None, appendTask = False,
taskChain = None, owner = None, delay = None):
"""
Add a new task to the taskMgr. The task will begin executing
immediately, or next frame if its sort value has already
passed this frame.
Parameters:
funcOrTask: either an existing Task object (not already
added to the task manager), or a callable function
object. If this is a function, a new Task object will be
created and returned. You may also pass in a coroutine
object.
name (str): the name to assign to the Task. Required,
unless you are passing in a Task object that already has
a name.
extraArgs (list): the list of arguments to pass to the task
function. If this is omitted, the list is just the task
object itself.
appendTask (bool): If this is true, then the task object
itself will be appended to the end of the extraArgs list
before calling the function.
sort (int): the sort value to assign the task. The default
sort is 0. Within a particular task chain, it is
guaranteed that the tasks with a lower sort value will
all run before tasks with a higher sort value run.
priority (int): the priority at which to run the task. The
default priority is 0. Higher priority tasks are run
sooner, and/or more often. For historical purposes, if
you specify a priority without also specifying a sort,
the priority value is understood to actually be a sort
value. (Previously, there was no priority value, only a
sort value, and it was called "priority".)
uponDeath (bool): a function to call when the task
terminates, either because it has run to completion, or
because it has been explicitly removed.
taskChain (str): the name of the task chain to assign the
task to.
owner: an optional Python object that is declared as the
"owner" of this task for maintenance purposes. The
owner must have two methods:
``owner._addTask(self, task)``, which is called when the
task begins, and ``owner._clearTask(self, task)``, which
is called when the task terminates. This is all the
ownermeans.
delay: an optional amount of seconds to wait before starting
the task (equivalent to doMethodLater).
Returns:
The new Task object that has been added, or the original
Task object that was passed in.
"""
task = self.__setupTask(funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath)
if delay is not None:
task.setDelay(delay)
self.mgr.add(task)
return task
def __setupTask(self, funcOrTask, name, priority, sort, extraArgs, taskChain, appendTask, owner, uponDeath):
if isinstance(funcOrTask, AsyncTask):
task = funcOrTask
elif hasattr(funcOrTask, '__call__') or \
hasattr(funcOrTask, 'cr_await') or \
isinstance(funcOrTask, types.GeneratorType):
# It's a function, coroutine, or something emulating a coroutine.
task = PythonTask(funcOrTask)
if name is None:
name = getattr(funcOrTask, '__qualname__', None) or \
getattr(funcOrTask, '__name__', None)
else:
self.notify.error(
'add: Tried to add a task that was not a Task or a func')
if hasattr(task, 'setArgs'):
# It will only accept arguments if it's a PythonTask.
if extraArgs is None:
extraArgs = []
appendTask = True
task.setArgs(extraArgs, appendTask)
elif extraArgs is not None:
self.notify.error(
'Task %s does not accept arguments.' % (repr(task)))
if name is not None:
task.setName(name)
assert task.hasName()
# For historical reasons, if priority is specified but not
# sort, it really means sort.
if priority is not None and sort is None:
task.setSort(priority)
else:
if priority is not None:
task.setPriority(priority)
if sort is not None:
task.setSort(sort)
if taskChain is not None:
task.setTaskChain(taskChain)
if owner is not None:
task.setOwner(owner)
if uponDeath is not None:
task.setUponDeath(uponDeath)
return task
[docs] def remove(self, taskOrName):
"""Removes a task from the task manager. The task is stopped,
almost as if it had returned task.done. (But if the task is
currently executing, it will finish out its current frame
before being removed.) You may specify either an explicit
Task object, or the name of a task. If you specify a name,
all tasks with the indicated name are removed. Returns the
number of tasks removed. """
if isinstance(taskOrName, AsyncTask):
return self.mgr.remove(taskOrName)
elif isinstance(taskOrName, list):
for task in taskOrName:
self.remove(task)
else:
tasks = self.mgr.findTasks(taskOrName)
return self.mgr.remove(tasks)
[docs] def removeTasksMatching(self, taskPattern):
"""Removes all tasks whose names match the pattern, which can
include standard shell globbing characters like \\*, ?, and [].
See also :meth:`remove()`.
Returns the number of tasks removed.
"""
tasks = self.mgr.findTasksMatching(GlobPattern(taskPattern))
return self.mgr.remove(tasks)
[docs] def step(self):
"""Invokes the task manager for one frame, and then returns.
Normally, this executes each task exactly once, though task
chains that are in sub-threads or that have frame budgets
might execute their tasks differently. """
startFrameTime = self.globalClock.getRealTime()
# Replace keyboard interrupt handler during task list processing
# so we catch the keyboard interrupt but don't handle it until
# after task list processing is complete.
self.fKeyboardInterrupt = 0
self.interruptCount = 0
if signal:
self.__prevHandler = signal.signal(signal.SIGINT, self.keyboardInterruptHandler)
try:
self.mgr.poll()
# This is the spot for an internal yield function
nextTaskTime = self.mgr.getNextWakeTime()
self.doYield(startFrameTime, nextTaskTime)
finally:
# Restore previous interrupt handler
if signal:
signal.signal(signal.SIGINT, self.__prevHandler)
self.__prevHandler = signal.default_int_handler
if self.fKeyboardInterrupt:
raise KeyboardInterrupt
[docs] def run(self):
"""Starts the task manager running. Does not return until an
exception is encountered (including KeyboardInterrupt). """
if PandaSystem.getPlatform() == 'emscripten':
return
# Set the clock to have last frame's time in case we were
# Paused at the prompt for a long time
t = self.globalClock.getFrameTime()
timeDelta = t - self.globalClock.getRealTime()
self.globalClock.setRealTime(t)
messenger.send("resetClock", [timeDelta])
if self.resumeFunc is not None:
self.resumeFunc()
if self.stepping:
self.step()
else:
self.running = True
while self.running:
try:
if len(self._frameProfileQueue) > 0:
numFrames, session, callback = self._frameProfileQueue.pop(0)
def _profileFunc(numFrames=numFrames):
self._doProfiledFrames(numFrames)
session.setFunc(_profileFunc)
session.run()
_profileFunc = None
if callback:
callback()
session.release()
else:
self.step()
except KeyboardInterrupt:
self.stop()
except SystemExit:
self.stop()
raise
except IOError as ioError:
code, message = self._unpackIOError(ioError)
# Since upgrading to Python 2.4.1, pausing the execution
# often gives this IOError during the sleep function:
# IOError: [Errno 4] Interrupted function call
# So, let's just handle that specific exception and stop.
# All other IOErrors should still get raised.
# Only problem: legit IOError 4s will be obfuscated.
if code == 4:
self.stop()
else:
raise
except Exception as e:
if self.extendedExceptions:
self.stop()
print_exc_plus()
else:
from direct.showbase import ExceptionVarDump
if ExceptionVarDump.wantStackDumpLog and \
ExceptionVarDump.dumpOnExceptionInit:
ExceptionVarDump._varDump__print(e)
raise
except:
if self.extendedExceptions:
self.stop()
print_exc_plus()
else:
raise
self.mgr.stopThreads()
def _unpackIOError(self, ioError):
# IOError unpack from http://www.python.org/doc/essays/stdexceptions/
# this needs to be in its own method, exceptions that occur inside
# a nested try block are not caught by the inner try block's except
try:
(code, message) = ioError
except:
code = 0
message = ioError
return code, message
[docs] def stop(self):
# Set a flag so we will stop before beginning next frame
self.running = False
def __tryReplaceTaskMethod(self, task, oldMethod, newFunction):
if not isinstance(task, PythonTask):
return 0
method = task.getFunction()
if isinstance(method, types.MethodType):
function = method.__func__
else:
function = method
if function == oldMethod:
newMethod = types.MethodType(newFunction, method.__self__)
task.setFunction(newMethod)
# Found a match
return 1
return 0
[docs] def replaceMethod(self, oldMethod, newFunction):
numFound = 0
for task in self.getAllTasks():
numFound += self.__tryReplaceTaskMethod(task, oldMethod, newFunction)
return numFound
[docs] def getProfileSession(self, name=None):
# call to get a profile session that you can modify before passing to profileFrames()
if name is None:
name = 'taskMgrFrameProfile'
# Defer this import until we need it: some Python
# distributions don't provide the profile and pstats modules.
PS = importlib.import_module('direct.showbase.ProfileSession')
return PS.ProfileSession(name)
[docs] def profileFrames(self, num=None, session=None, callback=None):
if num is None:
num = 1
if session is None:
session = self.getProfileSession()
# make sure the profile session doesn't get destroyed before we're done with it
session.acquire()
self._frameProfileQueue.append((num, session, callback))
def _doProfiledFrames(self, numFrames):
for i in range(numFrames):
self.step()
[docs] def getProfileFrames(self):
return self._profileFrames.get()
[docs] def getProfileFramesSV(self):
return self._profileFrames
[docs] def setProfileFrames(self, profileFrames):
self._profileFrames.set(profileFrames)
if (not self._frameProfiler) and profileFrames:
# import here due to import dependencies
FP = importlib.import_module('direct.task.FrameProfiler')
self._frameProfiler = FP.FrameProfiler()
[docs] def getProfileTasks(self):
return self._profileTasks.get()
[docs] def getProfileTasksSV(self):
return self._profileTasks
[docs] def setProfileTasks(self, profileTasks):
self._profileTasks.set(profileTasks)
if (not self._taskProfiler) and profileTasks:
# import here due to import dependencies
TP = importlib.import_module('direct.task.TaskProfiler')
self._taskProfiler = TP.TaskProfiler()
[docs] def logTaskProfiles(self, name=None):
if self._taskProfiler:
self._taskProfiler.logProfiles(name)
[docs] def flushTaskProfiles(self, name=None):
if self._taskProfiler:
self._taskProfiler.flush(name)
def _setProfileTask(self, task):
if self._taskProfileInfo.session:
self._taskProfileInfo.session.release()
self._taskProfileInfo.session = None
self._taskProfileInfo = ScratchPad(
taskFunc = task.getFunction(),
taskArgs = task.getArgs(),
task = task,
profiled = False,
session = None,
)
# Temporarily replace the task's own function with our
# _profileTask method.
task.setFunction(self._profileTask)
task.setArgs([self._taskProfileInfo], True)
def _profileTask(self, profileInfo, task):
# This is called instead of the task function when we have
# decided to profile a task.
assert profileInfo.task == task
# don't profile the same task twice in a row
assert not profileInfo.profiled
# Restore the task's proper function for next time.
appendTask = False
taskArgs = profileInfo.taskArgs
if taskArgs and taskArgs[-1] == task:
appendTask = True
taskArgs = taskArgs[:-1]
task.setArgs(taskArgs, appendTask)
task.setFunction(profileInfo.taskFunc)
# Defer this import until we need it: some Python
# distributions don't provide the profile and pstats modules.
PS = importlib.import_module('direct.showbase.ProfileSession')
profileSession = PS.ProfileSession('profiled-task-%s' % task.getName(),
Functor(profileInfo.taskFunc, *profileInfo.taskArgs))
ret = profileSession.run()
# set these values *after* profiling in case we're profiling the TaskProfiler
profileInfo.session = profileSession
profileInfo.profiled = True
return ret
def _hasProfiledDesignatedTask(self):
# have we run a profile of the designated task yet?
return self._taskProfileInfo.profiled
def _getLastTaskProfileSession(self):
return self._taskProfileInfo.session
def _getRandomTask(self):
# Figure out when the next frame is likely to expire, so we
# won't grab any tasks that are sleeping for a long time.
now = self.globalClock.getFrameTime()
avgFrameRate = self.globalClock.getAverageFrameRate()
if avgFrameRate < .00001:
avgFrameDur = 0.
else:
avgFrameDur = (1. / self.globalClock.getAverageFrameRate())
next = now + avgFrameDur
# Now grab a task at random, until we find one that we like.
tasks = self.mgr.getTasks()
i = random.randrange(tasks.getNumTasks())
task = tasks.getTask(i)
while not isinstance(task, PythonTask) or \
task.getWakeTime() > next:
tasks.removeTask(i)
i = random.randrange(tasks.getNumTasks())
task = tasks.getTask(i)
return task
def __repr__(self):
return str(self.mgr)
# In the event we want to do frame time managment, this is the
# function to replace or overload.
[docs] def doYield(self, frameStartTime, nextScheduledTaskTime):
pass
#def doYieldExample(self, frameStartTime, nextScheduledTaskTime):
# minFinTime = frameStartTime + self.MaxEpochSpeed
# if nextScheduledTaskTime > 0 and nextScheduledTaskTime < minFinTime:
# print(' Adjusting Time')
# minFinTime = nextScheduledTaskTime
# delta = minFinTime - self.globalClock.getRealTime()
# while delta > 0.002:
# print ' sleep %s'% (delta)
# time.sleep(delta)
# delta = minFinTime - self.globalClock.getRealTime()
if __debug__:
# to catch memory leaks during the tests at the bottom of the file
def _startTrackingMemLeaks(self):
pass
def _stopTrackingMemLeaks(self):
pass
def _checkMemLeaks(self):
pass
def _runTests(self):
if __debug__:
tm = TaskManager()
tm.setClock(ClockObject())
tm.setupTaskChain("default", tickClock = True)
# check for memory leaks after every test
tm._startTrackingMemLeaks()
tm._checkMemLeaks()
# run-once task
l = []
def _testDone(task, l=l):
l.append(None)
return task.done
tm.add(_testDone, 'testDone')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 1
_testDone = None
tm._checkMemLeaks()
# remove by name
def _testRemoveByName(task):
return task.done
tm.add(_testRemoveByName, 'testRemoveByName')
assert tm.remove('testRemoveByName') == 1
assert tm.remove('testRemoveByName') == 0
_testRemoveByName = None
tm._checkMemLeaks()
# duplicate named tasks
def _testDupNamedTasks(task):
return task.done
tm.add(_testDupNamedTasks, 'testDupNamedTasks')
tm.add(_testDupNamedTasks, 'testDupNamedTasks')
assert tm.remove('testRemoveByName') == 0
_testDupNamedTasks = None
tm._checkMemLeaks()
# continued task
l = []
def _testCont(task, l = l):
l.append(None)
return task.cont
tm.add(_testCont, 'testCont')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
tm.remove('testCont')
_testCont = None
tm._checkMemLeaks()
# continue until done task
l = []
def _testContDone(task, l = l):
l.append(None)
if len(l) >= 2:
return task.done
else:
return task.cont
tm.add(_testContDone, 'testContDone')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
tm.step()
assert len(l) == 2
assert not tm.hasTaskNamed('testContDone')
_testContDone = None
tm._checkMemLeaks()
# hasTaskNamed
def _testHasTaskNamed(task):
return task.done
tm.add(_testHasTaskNamed, 'testHasTaskNamed')
assert tm.hasTaskNamed('testHasTaskNamed')
tm.step()
assert not tm.hasTaskNamed('testHasTaskNamed')
_testHasTaskNamed = None
tm._checkMemLeaks()
# task sort
l = []
def _testPri1(task, l = l):
l.append(1)
return task.cont
def _testPri2(task, l = l):
l.append(2)
return task.cont
tm.add(_testPri1, 'testPri1', sort = 1)
tm.add(_testPri2, 'testPri2', sort = 2)
tm.step()
assert len(l) == 2
assert l == [1, 2,]
tm.step()
assert len(l) == 4
assert l == [1, 2, 1, 2,]
tm.remove('testPri1')
tm.remove('testPri2')
_testPri1 = None
_testPri2 = None
tm._checkMemLeaks()
# task extraArgs
l = []
def _testExtraArgs(arg1, arg2, l=l):
l.extend([arg1, arg2,])
return done
tm.add(_testExtraArgs, 'testExtraArgs', extraArgs=[4,5])
tm.step()
assert len(l) == 2
assert l == [4, 5,]
_testExtraArgs = None
tm._checkMemLeaks()
# task appendTask
l = []
def _testAppendTask(arg1, arg2, task, l=l):
l.extend([arg1, arg2,])
return task.done
tm.add(_testAppendTask, '_testAppendTask', extraArgs=[4,5], appendTask=True)
tm.step()
assert len(l) == 2
assert l == [4, 5,]
_testAppendTask = None
tm._checkMemLeaks()
# task uponDeath
l = []
def _uponDeathFunc(task, l=l):
l.append(task.name)
def _testUponDeath(task):
return done
tm.add(_testUponDeath, 'testUponDeath', uponDeath=_uponDeathFunc)
tm.step()
assert len(l) == 1
assert l == ['testUponDeath']
_testUponDeath = None
_uponDeathFunc = None
tm._checkMemLeaks()
# task owner
class _TaskOwner:
def _addTask(self, task):
self.addedTaskName = task.name
def _clearTask(self, task):
self.clearedTaskName = task.name
to = _TaskOwner()
l = []
def _testOwner(task):
return done
tm.add(_testOwner, 'testOwner', owner=to)
tm.step()
assert getattr(to, 'addedTaskName', None) == 'testOwner'
assert getattr(to, 'clearedTaskName', None) == 'testOwner'
_testOwner = None
del to
_TaskOwner = None
tm._checkMemLeaks()
doLaterTests = [0,]
# doLater
l = []
def _testDoLater1(task, l=l):
l.append(1)
def _testDoLater2(task, l=l):
l.append(2)
def _monitorDoLater(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .03:
assert l == [1, 2,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLater1, 'testDoLater1')
tm.doMethodLater(.02, _testDoLater2, 'testDoLater2')
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLater, 'monitorDoLater', sort=10)
_testDoLater1 = None
_testDoLater2 = None
_monitorDoLater = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater sort
l = []
def _testDoLaterPri1(task, l=l):
l.append(1)
def _testDoLaterPri2(task, l=l):
l.append(2)
def _monitorDoLaterPri(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [1, 2,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterPri1, 'testDoLaterPri1', sort=1)
tm.doMethodLater(.01, _testDoLaterPri2, 'testDoLaterPri2', sort=2)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterPri, 'monitorDoLaterPri', sort=10)
_testDoLaterPri1 = None
_testDoLaterPri2 = None
_monitorDoLaterPri = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater extraArgs
l = []
def _testDoLaterExtraArgs(arg1, l=l):
l.append(arg1)
def _monitorDoLaterExtraArgs(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [3,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterExtraArgs, 'testDoLaterExtraArgs', extraArgs=[3,])
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterExtraArgs, 'monitorDoLaterExtraArgs', sort=10)
_testDoLaterExtraArgs = None
_monitorDoLaterExtraArgs = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater appendTask
l = []
def _testDoLaterAppendTask(arg1, task, l=l):
assert task.name == 'testDoLaterAppendTask'
l.append(arg1)
def _monitorDoLaterAppendTask(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [4,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterAppendTask, 'testDoLaterAppendTask',
extraArgs=[4,], appendTask=True)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterAppendTask, 'monitorDoLaterAppendTask', sort=10)
_testDoLaterAppendTask = None
_monitorDoLaterAppendTask = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater uponDeath
l = []
def _testUponDeathFunc(task, l=l):
assert task.name == 'testDoLaterUponDeath'
l.append(10)
def _testDoLaterUponDeath(arg1, l=l):
return done
def _monitorDoLaterUponDeath(task, tm=tm, l=l, doLaterTests=doLaterTests):
if task.time > .02:
assert l == [10,]
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterUponDeath, 'testDoLaterUponDeath',
uponDeath=_testUponDeathFunc)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterUponDeath, 'monitorDoLaterUponDeath', sort=10)
_testUponDeathFunc = None
_testDoLaterUponDeath = None
_monitorDoLaterUponDeath = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# doLater owner
class _DoLaterOwner:
def _addTask(self, task):
self.addedTaskName = task.name
def _clearTask(self, task):
self.clearedTaskName = task.name
doLaterOwner = _DoLaterOwner()
l = []
def _testDoLaterOwner(l=l):
pass
def _monitorDoLaterOwner(task, tm=tm, l=l, doLaterOwner=doLaterOwner,
doLaterTests=doLaterTests):
if task.time > .02:
assert getattr(doLaterOwner, 'addedTaskName', None) == 'testDoLaterOwner'
assert getattr(doLaterOwner, 'clearedTaskName', None) == 'testDoLaterOwner'
doLaterTests[0] -= 1
return task.done
return task.cont
tm.doMethodLater(.01, _testDoLaterOwner, 'testDoLaterOwner',
owner=doLaterOwner)
doLaterTests[0] += 1
# make sure we run this task after the doLaters if they all occur on the same frame
tm.add(_monitorDoLaterOwner, 'monitorDoLaterOwner', sort=10)
_testDoLaterOwner = None
_monitorDoLaterOwner = None
del doLaterOwner
_DoLaterOwner = None
# don't check until all the doLaters are finished
#tm._checkMemLeaks()
# run the doLater tests
while doLaterTests[0] > 0:
tm.step()
del doLaterTests
tm._checkMemLeaks()
# getTasks
def _testGetTasks(task):
return task.cont
# No doLaterProcessor in the new world.
assert len(tm.getTasks()) == 0
tm.add(_testGetTasks, 'testGetTasks1')
assert len(tm.getTasks()) == 1
assert (tm.getTasks()[0].name == 'testGetTasks1' or
tm.getTasks()[1].name == 'testGetTasks1')
tm.add(_testGetTasks, 'testGetTasks2')
tm.add(_testGetTasks, 'testGetTasks3')
assert len(tm.getTasks()) == 3
tm.remove('testGetTasks2')
assert len(tm.getTasks()) == 2
tm.remove('testGetTasks1')
tm.remove('testGetTasks3')
assert len(tm.getTasks()) == 0
_testGetTasks = None
tm._checkMemLeaks()
# getDoLaters
def _testGetDoLaters():
pass
assert len(tm.getDoLaters()) == 0
tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater1')
assert len(tm.getDoLaters()) == 1
assert tm.getDoLaters()[0].name == 'testDoLater1'
tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater2')
tm.doMethodLater(.1, _testGetDoLaters, 'testDoLater3')
assert len(tm.getDoLaters()) == 3
tm.remove('testDoLater2')
assert len(tm.getDoLaters()) == 2
tm.remove('testDoLater1')
tm.remove('testDoLater3')
assert len(tm.getDoLaters()) == 0
_testGetDoLaters = None
tm._checkMemLeaks()
# duplicate named doLaters removed via taskMgr.remove
def _testDupNameDoLaters():
pass
# the doLaterProcessor is always running
tm.doMethodLater(.1, _testDupNameDoLaters, 'testDupNameDoLater')
tm.doMethodLater(.1, _testDupNameDoLaters, 'testDupNameDoLater')
assert len(tm.getDoLaters()) == 2
tm.remove('testDupNameDoLater')
assert len(tm.getDoLaters()) == 0
_testDupNameDoLaters = None
tm._checkMemLeaks()
# duplicate named doLaters removed via remove()
def _testDupNameDoLatersRemove():
pass
# the doLaterProcessor is always running
dl1 = tm.doMethodLater(.1, _testDupNameDoLatersRemove, 'testDupNameDoLaterRemove')
dl2 = tm.doMethodLater(.1, _testDupNameDoLatersRemove, 'testDupNameDoLaterRemove')
assert len(tm.getDoLaters()) == 2
dl2.remove()
assert len(tm.getDoLaters()) == 1
dl1.remove()
assert len(tm.getDoLaters()) == 0
_testDupNameDoLatersRemove = None
# nameDict etc. isn't cleared out right away with task.remove()
tm._checkMemLeaks()
# getTasksNamed
def _testGetTasksNamed(task):
return task.cont
assert len(tm.getTasksNamed('testGetTasksNamed')) == 0
tm.add(_testGetTasksNamed, 'testGetTasksNamed')
assert len(tm.getTasksNamed('testGetTasksNamed')) == 1
assert tm.getTasksNamed('testGetTasksNamed')[0].name == 'testGetTasksNamed'
tm.add(_testGetTasksNamed, 'testGetTasksNamed')
tm.add(_testGetTasksNamed, 'testGetTasksNamed')
assert len(tm.getTasksNamed('testGetTasksNamed')) == 3
tm.remove('testGetTasksNamed')
assert len(tm.getTasksNamed('testGetTasksNamed')) == 0
_testGetTasksNamed = None
tm._checkMemLeaks()
# removeTasksMatching
def _testRemoveTasksMatching(task):
return task.cont
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching')
assert len(tm.getTasksNamed('testRemoveTasksMatching')) == 1
tm.removeTasksMatching('testRemoveTasksMatching')
assert len(tm.getTasksNamed('testRemoveTasksMatching')) == 0
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching1')
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching2')
assert len(tm.getTasksNamed('testRemoveTasksMatching1')) == 1
assert len(tm.getTasksNamed('testRemoveTasksMatching2')) == 1
tm.removeTasksMatching('testRemoveTasksMatching*')
assert len(tm.getTasksNamed('testRemoveTasksMatching1')) == 0
assert len(tm.getTasksNamed('testRemoveTasksMatching2')) == 0
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching1a')
tm.add(_testRemoveTasksMatching, 'testRemoveTasksMatching2a')
assert len(tm.getTasksNamed('testRemoveTasksMatching1a')) == 1
assert len(tm.getTasksNamed('testRemoveTasksMatching2a')) == 1
tm.removeTasksMatching('testRemoveTasksMatching?a')
assert len(tm.getTasksNamed('testRemoveTasksMatching1a')) == 0
assert len(tm.getTasksNamed('testRemoveTasksMatching2a')) == 0
_testRemoveTasksMatching = None
tm._checkMemLeaks()
# create Task object and add to mgr
l = []
def _testTaskObj(task, l=l):
l.append(None)
return task.cont
t = Task(_testTaskObj)
tm.add(t, 'testTaskObj')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
tm.remove('testTaskObj')
tm.step()
assert len(l) == 2
_testTaskObj = None
tm._checkMemLeaks()
# remove Task via task.remove()
l = []
def _testTaskObjRemove(task, l=l):
l.append(None)
return task.cont
t = Task(_testTaskObjRemove)
tm.add(t, 'testTaskObjRemove')
tm.step()
assert len(l) == 1
tm.step()
assert len(l) == 2
t.remove()
tm.step()
assert len(l) == 2
del t
_testTaskObjRemove = None
tm._checkMemLeaks()
# this test fails, and it's not clear what the correct behavior should be.
# sort passed to Task.__init__ is always overridden by taskMgr.add()
# even if no sort is specified, and calling Task.setSort() has no
# effect on the taskMgr's behavior.
# set/get Task sort
#l = []
#def _testTaskObjSort(arg, task, l=l):
# l.append(arg)
# return task.cont
#t1 = Task(_testTaskObjSort, sort=1)
#t2 = Task(_testTaskObjSort, sort=2)
#tm.add(t1, 'testTaskObjSort1', extraArgs=['a',], appendTask=True)
#tm.add(t2, 'testTaskObjSort2', extraArgs=['b',], appendTask=True)
#tm.step()
#assert len(l) == 2
#assert l == ['a', 'b']
#assert t1.getSort() == 1
#assert t2.getSort() == 2
#t1.setSort(3)
#assert t1.getSort() == 3
#tm.step()
#assert len(l) == 4
#assert l == ['a', 'b', 'b', 'a',]
#t1.remove()
#t2.remove()
#tm.step()
#assert len(l) == 4
#del t1
#del t2
#_testTaskObjSort = None
#tm._checkMemLeaks()
del l
tm.destroy()
del tm
if __debug__:
[docs] def checkLeak():
import gc
gc.enable()
from direct.showbase.DirectObject import DirectObject
from direct.task.TaskManagerGlobal import taskMgr
class TestClass(DirectObject):
def doTask(self, task):
return task.done
obj = TestClass()
startRefCount = sys.getrefcount(obj)
print('sys.getrefcount(obj): %s' % sys.getrefcount(obj))
print('** addTask')
t = obj.addTask(obj.doTask, 'test')
print('sys.getrefcount(obj): %s' % sys.getrefcount(obj))
print('task.getRefCount(): %s' % t.getRefCount())
print('** removeTask')
obj.removeTask('test')
print('sys.getrefcount(obj): %s' % sys.getrefcount(obj))
print('task.getRefCount(): %s' % t.getRefCount())
print('** step')
taskMgr.step()
taskMgr.step()
taskMgr.step()
print('sys.getrefcount(obj): %s' % sys.getrefcount(obj))
print('task.getRefCount(): %s' % t.getRefCount())
print('** task release')
t = None
print('sys.getrefcount(obj): %s' % sys.getrefcount(obj))
assert sys.getrefcount(obj) == startRefCount